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Generic programming in C++ is characterized by the use of template parameters to represent abstract data
types, that is, "concepts" as the term is used in the SGI STL documentation (see Generic Programming and
the STL, by M.H. Austern, Addison-Wesley, 1999 and the SGI Implementation of the Standard Template
Library, http://www.sgi.com/Technology/STL/). Unfortunately, the flexibility provided by templates
generally comes at the expense of interface safety. In this article, we present a technique for reintroducing
interface safety into template functions.

Consider Example 1(a). If you have a function that operates on a stack of integers, you could use an object-
oriented approach to describe the stack requirements using an abstract base class. A subsequent call foo(y) is
only valid if the argument y bound to x is of a type derived from Stack. This ensures the type of y has at
least push() and pop() member functions so that the calls to these functions inside of foo() are guaranteed to
be well defined.

With templates, interface safety becomes a much more nebulous issue. For example, suppose you have a
function template declared as in Example 1(b). In this case, the compiler lets an object of any type be
passed as an argument to bar(), whether or not it is a stack (that is, has push() and pop() member functions).
If an incorrect type is used, a compiler error will occur. However, the error will not be caught at the call site
of bar(), but somewhere deep inside the implementation of bar(). What you need is a mechanism for
template functions that provides interface safety in a manner reminiscent of abstract base classes. We do this
by using several new C++ idioms to specify and then exercise requirements on template parameters. We use
the term "concept" to mean a set of requirements and, therefore, call our resulting methodology "concept
checking."

A group of us at SGI and the University of Notre Dame began working on concept checking mechanisms
more than a year ago, producing the concept checks that are currently in the SGI STL distribution. This
work was further developed (see "Concept Checking: Binding Parametric Polymorphism in C++," by J. Siek
and A. Lumsdaine, First Workshop on C++ Template Programming, October 2000) and is now available in
the form of the Boost Concept Checking Library
(http://www.boost.org/libs/concept_check/concept_check.htm). In this article we cover two complementary
aspects of concept checking — concept checking and concept covering. Concept checking deals with



properly expressing the requirements of a concept, verifying that template arguments meet these
requirements, and providing appropriate error messages when user-supplied template arguments do not meet
these requirements. Concept covering verifies that the stated requirements for a template are valid; that is,
that they cover all the ways in which the template parameter is used without introducing unnecessary
requirements.

Concepts

A concept is a set of requirements (valid expressions, associated types, semantic invariants, complexity
guarantees, and so on) that a type must fulfill to be correctly used as an argument in a call to a generic
algorithm. However, C++ has no explicit mechanism for representing concepts — template parameters are
merely place holders and express no constraints on the template argument. By convention, template
parameters are given names corresponding to the concept that is required, but C++ compilers do not enforce
compliance to the concept at the point where the template parameter is bound to an actual type.

Naturally, a compile-time error occurs if a generic algorithm is invoked with a type that does not fulfill at
least the syntactic requirements of the concept. However, this error will not reflect that the type did not meet
all requirements of the concept per se. Rather, the error may occur at a point where an expression is not
valid for the type, or where a presumed associated type is not available. The resulting error messages are
largely uninformative and basically impenetrable.

What is required is a mechanism for enforcing "concept safety" at (or close to) the point of instantiation.
The Boost Concept Checking Library (BCCL) uses Standard C++ constructs to enforce early concept
compliance and provide more informative error messages upon non-compliance. The techniques described
here only address the syntactic requirements of concepts (the valid expressions and associated types). These
techniques do not address the semantic invariants or complexity guarantees that are also part of concept
requirements (although this is an active topic in our research group).

Extended Example

It's happened to us all: One small mistake in using a Standard Library (SL) algorithm and the compiler
produces pages of difficult to decipher error messages. Of course this problem is not specific to the SL, but
it affects the use of any nontrivial template class or function. Example 2 illustrates such an error. Here we
call the std::stable_sort() algorithm from the SL, applying it to a linked list.

Attempting to compile this code with GNU C++ produces the compiler error in Example 3. In this case, the
fundamental error is that std::list::iterator does not model the concept of RandomAccesslterator. The list
iterator is only bidirectional, not fully random access (as would be a std::vector::iterator). Unfortunately,
there is nothing in the error message to indicate this to users. The error may be obvious to C++
programmers who have enough experience with template libraries. However, for the uninitiated, there are
several reasons why this message would be hard to understand.

e The location of the error. Line 5 of Example 2 is not pointed to by the error message, even though
GNU C++ prints up to four levels deep in the instantiation stack.

e There is no textual correlation between the error message and the documented requirements for
std::stable_sort() and for RandomAccesslterator.

e The error message is overly long, listing functions internal to the SL that users do not (and should not)
know or care about.

e With so many internal library functions listed in the error message, the user could easily infer the
error is due to the library, rather than the user's own code.



Example 4 illustrates what you might expect from a more informative message (and is in fact what the
BCCL produces). This message rectifies several of the shortcomings of the previous error messages.

e The location of the error is specified in the error message.

e The message refers explicitly to concepts that the user can look up in the SL documentation
(RandomAccesslterator).

e The error message is much shorter and does not reveal internal STL functions.

e The presence of concept_check.hpp and constraints() in the error message alerts users that the error
lies in the user code, not in the template implementation.

Concept Checking Classes

To check a concept, we employ a special-purpose class (a concept checking class) that ensures that a given
type (or set of types) models the given concept. An example of a concept checking class from the BCCL is
the EqualityComparableConcept class that corresponds to the EqualityComparable requirements described
in 20.1.1 of the C++ Standard, and to the EqualityComparable concept documented in the SGI STL.

template <class T>
struct EqualityComparableConcept;

The template argument 7 represents the type to be checked. That is, the purpose of
EqualityComparableConcept is to make sure that the template argument given for 7 models the
EqualityComparable concept. Each concept checking class has a member function named constraints(),
which contains the valid expressions for the concept. To check whether some type is EqualityComparable,
we need to instantiate the concept checking class with the type, then find a way to get the compiler to
compile the constraints() function without actually executing the function. The BCCL defines two utilities
that make this easy: function_requires() and BOOST_CLASS_REQUIRES. The function_requires()
function can be used in function bodies and the BOOST_CLASS_REQUIRES macro can be used inside
class bodies.

The function_requires() function takes no arguments, but has a template parameter for the concept checking
class. This means that the instantiated concept checking class must be given as an explicit template
argument; see Listing One(a). With this concept check inserted, if the class foo is not a model of
EqualityComparable (it has not defined operators == and !=), then function_requires() will catch the error
upfront, instead of allowing the error to occur somewhere inside the template function.

The BOOST_CLASS_REQUIRES macro can be used inside a class definition to check whether some type
models a concept; see Listing One(b).

Applications of Concept Checks

One good application of concept checks would be to insert function_requires() at the top of
std::stable_sort() to make sure the template parameter type models RandomAccesslterator. In addition,
std::stable_sort() requires that the value type of the iterators be LessThanComparable, so you should also
use function_requires() to check this; see Listing Two(a).

As an example of using BOOST_CLASS_REQUIRES, look at a concept check that could be added to
std::vector. One requirement that is placed on the element type is that it must be Assignable. You can check
this by inserting BOOST_CLASS_REQUIRES at the top of the definition for std::vector, as in Listing
Two(b).



Although the concept checks are designed for use by generic library implementors, they can also be useful
to end users. Sometimes you may not be sure whether some type models a particular concept. This can
easily be checked by creating a small program and using function_requires() with the type and concept in
question. The BCCL file stl_concept_checks.cpp provides an example of applying the concept checks to SL
containers.

Implementation

Ideally, we would like to catch (and indicate) the concept violation at the point of instantiation. As
mentioned in Design and Evolution of C++, by Bjarne Stroustrup (Addison-Wesley, 1994), the error can be
caught by exercising all of the requirements needed by the function template. Exactly how the requirements
(the valid expressions in particular) are exercised is a tricky issue, because we want the code to be compiled,
but not executed. Our approach is to exercise the requirements in a separate function that is assigned to a
function pointer. In this case, the compiler instantiates the function but will not actually invoke it. In
addition, an optimizing compiler will remove the pointer assignment as dead code (though the run-time
overhead added by the assignment would be trivial in any case). It might be conceivable for a compiler to
skip the semantic analysis and compilation of the constraint functions in the first place, which would make
our function pointer technique ineffective. However, this is unlikely because removal of unnecessary code
and functions is typically done in later stages of a compiler. We have successfully used the function pointer
technique with GNU C++, Microsoft Visual C++, and several EDG-based compilers (KAI C++, SGI
MIPSpro). Listing Four shows how this technique can be applied to the std::stable_sort() function.

There is often a large set of requirements that need to be checked, and it would be cumbersome for the
library implementor to write constraint functions such as stable_sort_constraints() for every public function.
Instead, we group sets of valid expressions together, according to the definitions of the corresponding
concepts. For each concept, we define a concept checking class template where the template parameter is for
the type to be checked. The class contains a constraints() member function, which exercises all of the valid
expressions of the concept. The objects used in the constraints() function, such as n and i, are declared as
data members of the concept checking class; see Listing Five. You can still use the function pointer
mechanism to cause instantiation of the constraints function, however, now it will be a member function
pointer. To make it easy for library implementors to invoke the concept checks, we wrap the member
function pointer mechanism in a function named function_requires(). Listing Six(a) shows how to use
function_requires() to make sure that the iterator is a RandomAccesslterator.

The definition of function_requires() is as follows: The Concept is the concept checking class that has been
instantiated with the modeling type. We assign the address of the constraints member function to the
function pointer x, which causes the instantiation of the constraints function and checking of the concept's
valid expressions. We then pass x to the ignore_unused_variable_warning() function, and wrap everything
in a loop to prevent do-while collisions; see Listing Six(b).

To check the type parameters of class templates, we provide the BOOST_CLASS_REQUIRES macro that
can be used inside the body of a class definition (whereas function_requires() can only be used inside of a
function body). This macro declares a nested class template, where the template parameter is a function
pointer. We then use the nested class type in a typedef, see Listing Six(c), with the function pointer type of
the constraint function as the template argument. We use the type_var and concept names in the nested class
and typedef names to help prevent name collisions.

In addition, there are versions of BOOST_CLASS_REQUIRES that take more arguments to handle concepts
that include interactions between two or more types. BOOST_CLASS_REQUIRES was not used in the
implementation of the BCCL concept checking classes because several compilers do not implement



template parameters of function pointer type.

Creating Concept Checking Classes

As an example of how to create a concept checking class, look at how to create the corresponding checks
for the RandomAccesslterator concept. First, as a convention we name the concept checking class after the
concept, and add the suffix "Concept." Next, we define a member function named constraints() in which we
will exercise the valid expressions of the concept. function_requires() expects this function's signature to
appear exactly as it appears in Listing Three: a void nonconst member function with no parameters.

The first part of the constraints() function includes the requirements that correspond to the refinement
relationships between RandomAccesslterator and the concepts that it builds upon: Bidirectionallterator and
LessThanComparable. We could have instead used BOOST_CLASS_REQUIRES and placed these
requirements in the class body, however, BOOST_CLASS_REQUIRES uses C++ features that are less
portable.

Next we check that the iterator_category of the iterator is either std::random_access_iterator_tag or a
derived class. After that, we write out some code that corresponds to the valid expressions of the
RandomAccesslterator concept. Typedefs can also be added to enforce the associated types of the concept;
see Listing Three.

One potential pitfall in designing concept checking classes is using more expressions in the constraints()
function than necessary. For example, it is easy to accidentally use the default constructor to create the
objects that will be needed in the expressions (and not all concepts require a default constructor). This is the
reason we write the constraints() function as a member function of a class. The objects involved in the
expressions are declared as data members of the class. Since objects of the constraints() class template are
never instantiated, the default constructor for the concept checking class is never instantiated. Hence, the
data members' default constructors are never instantiated (C++ Standard Section 14.7.1 9).

Concept Covering and Archetypes

While it is important to select the minimal requirements (concepts) for the inputs to a component, it is
equally important to verify that the chosen concepts cover the algorithm. That is, any possible user error
should be caught by the concept checks and not slip through. Concept coverage can be verified through the
use of archetype classes. An archetype class is an exact implementation of the interface associated with a
particular concept. The run-time behavior of the archetype class is not important — the functions can be left
empty. A simple test program can then be compiled with the archetype classes as the inputs to the
component. If the program compiles, then one can be sure that the concepts cover the component.

Listing Seven shows the archetype class for the Triviallterator concept. Care must be taken to ensure that
the archetype is an exact match to the concept. For example, the concept states that the return type of
operator*() must be convertible to the value type. It does not state the more stringent requirement that the
return type be T& or const T&. The correct approach is to create an artificial return type that is convertible
to T, as we have done here with input_proxy. The validity of the archetype class test is completely
dependent on it being an exact match with the concept, which must be verified by careful (manual)
inspection.

Generic algorithms are often tested by being instantiated with a number of common input types. For
example, you might apply std::stable_sort() with basic pointer types as the iterators. Though appropriate for
testing the run-time behavior of the algorithm, this is not helpful for ensuring concept coverage because
C++ types never match particular concepts, they often provide much more than the minimal functionality



required by any one concept. That is, even though the function template compiles with a given type, the
concept requirements may still fall short of covering the function's actual requirements. This is why it is
important to compile with archetype classes in addition to testing with common input types.

Listing Eight is an excerpt from the BCCL file stl_concept_covering.cpp that shows how archetypes can be
used to check the requirement documentation for std::stable_sort(). In this case, it looks like the
CopyConstructible and Assignable requirements were forgotten in the SGI STL documentation (try
removing those archetypes). The Boost archetype classes have been designed so that they can be layered. In
this example, the value type of the iterator is composed out of two archetypes. In Listing Eight, template
parameters named Base indicate where the layered archetype can be used.

Requirement Minimization

The process of deciding how to group requirements into concepts and deciding which concepts to use in
each algorithm is perhaps the most difficult (yet most important) part of building a generic library. A
guiding principle to use during this process is one we call the "requirement minimization principle" —
minimize the requirements on the input parameters of a component to increase its reusability.

There is natural tension in this statement. By definition, the input parameters must be used by the
component in order for the component to accomplish its task (by "component" we mean a function or class
template). The challenge then is to implement the component in such a way that makes the fewest
assumptions (the minimum requirements) about the inputs while still accomplishing the task. The traditional
notions of abstraction tie in directly to the idea of minimal requirements. The more abstract the input, the
fewer the requirements. Thus, concepts are simply the embodiment of abstract data types in C++ template
programming. When designing the concepts for some problem domain, it is important to keep in mind their
purpose, namely to express the requirements for the input to the components. With respect to the
requirement minimization principle, this means we want to minimize concepts.

Minimality in concepts is a property associated with the underlying semantics of the problem domain being
represented. In the problem domain of basic containers, requiring traversal in a single direction is a smaller
requirement than requiring traversal in both directions (hence the distinction between Forwardlterator and
Bidirectionallterator). The semantic difference can be easily seen in the difference between the set of
concrete data structures that have forward iterators versus the set that has bidirectional iterators. For
example, singly linked lists would fall in the set of data structures having forward iterators, but not
bidirectional iterators. In addition, the set of algorithms that one can implement using only forward iterators
1s quite different than the set that can be implemented with bidirectional iterators. Because of this, it is
important to factor families of requirements into rather fine-grained concepts. For example, the requirements
for iterators are factored into the six SL iterator concepts (trivial, input, output, forward, bidirectional, and
random access).

The Boost Concept Checking Library

The Boost Concept Checking Library includes concept checking classes for all of the concepts used in the
C++ Standard Library (plus a few more). In addition, other Boost libraries include concept checking classes
for the concepts that are particular to those libraries. For example, the Boost Graph Library includes checks
for the graph concepts and property map concepts that it provides. We encourage you to use concept
checking as part and parcel of developing generic algorithms. When writing algorithms that use existing
concepts, you should simply reuse the associated concept check. When introducing new concepts, you
should develop corresponding concept checks for your own use and for users of your software.



Looking to the Future

Designing, implementing, and verifying concept checks for generic C++ libraries must presently be done
manually. As a result, the process is time consuming and (likely to be) error prone. Implementors would
benefit greatly if some or all of this process could be automated.

A first step would be to have a tool that statically analyzes a class or function template and records all the
kinds of expressions that involve the template parameter types. Such a tool would ease the task of verifying
concept coverage. A second step would pattern-match the set of all required expressions against a standard
set (or library-defined set) of concepts, thereby summarizing the requirements in terms of concepts. This
information could then be used in two ways. First, it could be used to create readable reports for library
documentation. Second, it could be used to provide informative compiler error messages without the need to
manually insert concept checks. Finally, we remark that there is much work to be done in the general area of
generic programming. Outside of C++, there are a number of approaches one could take for designing a
language that directly supports concepts.
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Listing One

(a)

// In my library:
template <class T>
void some function template(T x)

{

function requires< EqualityComparableConcept<T> >();
//

}i

// In the user's code:

class foo {

/]e..

}i

int main() {
foo f;
some_function template(f);
return 0;

}
(b)

// In my library:

template <class T>

struct some class template

{
BOOST CLASS REQUIRES(T, EqualityComparableConcept);
//



}i

// In the user's code:

class foo {
/]e..

}i

int main() {
some_class_template<foo> glc;
/] ...

return 0;

Back to Article

Listing Two

(a)

template <class RandomAccessIter>
void stable_sort(RandomAccessIter first, RandomAccessIter last)
{
function requires< RandomAccessIteratorConcept<RandomAccessIter> >();
typedef typename std::iterator traits<RandomAccessIter>::
value_ type value_type;
function requires< LessThanComparableConcept<value type> >();

(b)

namespace std {
template <class T>
struct vector {
BOOST CLASS REQUIRES(T, AssignableConcept);

Back to Article

Listing Three

template <class Iter>
struct RandomAccessIteratorConcept

{

void constraints() {



function requires< BidirectionallteratorConcept<Iter> >();
function requires< LessThanComparableConcept<Iter> >();
function requires< ConvertibleConcept<

typename std::iterator traits<Iter>::iterator category,
std::random_access_ iterator tag> >();
+= n;
=i+ n; i=n+1i;
-=n

| ~e

o R

i
i-3;
[n];

}

Iter a, b;
Iter i, 3J;
typename std::iterator traits<Iter>::difference type n;

Back to Article

Listing Four

template <class RandomAccessIterator>
void stable sort constraints(RandomAccessIterator i)

{
typename std::iterator traits<RandomAccessIterator>
::difference type n;
i += n; // exercise the requirements for RandomAccessIterator
}

template <class RandomAccessIterator>
void stable sort(RandomAccessIterator first, RandomAccessIterator last)

{
typedef void (*fptr type)(RandomAccessIterator);
fptr type x = &stable sort constraints;

Back to Article

Listing Five

template <class Iter>
struct RandomAccessIterator concept

{



void constraints()

typename std::iterator traits<RandomAccessIterator>
::difference type n;
Iter i;

}i

Back to Article

Listing Six

(a)

template <class Iter>
void stable sort(Iter first, Iter last)

{
function requires< RandomAccessIteratorConcept<Iter> >();

}
(b)

template <class Concept>
void function requires()

{
void (Concept::*x)() = BOOST FPTR Concept::constraints;
ignore unused variable warning(x);

}

(c)

#define BOOST CLASS REQUIRES(type var, concept) \
typedef void (concept <type var>::* func##type var##concept)(); \
template <func##type var##concept Tpl> \
struct concept checking ##type var##concept { }; \
typedef concept checking ##type var##concept< \
BOOST_FPTR concept <type var>::constraints> \
concept checking typedef ##type var##concept

Back to Article

Listing Seven



template <class T>
struct input proxy {
operator const T&() {
return static_object<T>::get(); // Get a reference without constructing
}
}i
template <class T>
class trivial iterator_ archetype
{
typedef trivial iterator archetype self;
public:
trivial iterator archetype() { }
trivial iterator archetype(const self&) { }
self& operator=(const self&) { return *this; }
friend bool operator==(const self&, const self&) { return true; }
friend bool operator!=(const self&, const self&) { return true; }
input proxy<T> operator*() { return input proxy<T>(); }
}i
namespace std {
template <class T>
struct iterator traits< trivial iterator archetype<T> >
{
typedef T value_ type;

}i

Back to Article

Listing Eight

{
typedef less_than comparable archetype<
sgi assignable archetype<> > ValueType;
random_access_iterator archetype<ValueType> ri;
std::stable sort(ri, ri);
}

Back to Article
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