Generic Programming for High Performance Numerical Linear Algebra

Andrew Lumsdaine and Jeremy Siek

Department of Computer Science and Engineering

University of Notre Dame
Overview

- Motivation
- Generic algorithms for linear algebra
- Design of MTL and BLAIS
- Performance results
- Conclusions
Motivation

- Scientific computing is one of the most important and successful genres of computing
- Exceedingly complex, therefore sound software engineering needed even more than in other genres
- Scientific software is mired in Fortran 77
- Our goal: Provide a complete, modern, high performance library for numerical linear algebra
- Our hammer: Genericity
Linear Algebra

The domain abstractions:

- Vector space V over a field F
- Scalar arithmetic operations for F
- Vector space operations for V
- Linear transformations: $V \rightarrow V$
Linear Algebra

- $\alpha, \beta \in F, x, y \in V$

 Scalar multiply
 \[\alpha \ast x \in V \]

 Linearity
 \[(\alpha \ast x + \beta \ast y) \in V \]

 Linear transformation
 \[A : V \rightarrow V \]
Additional Structure

- \(\alpha, \beta \in F, x, y \in V \)

 - Banach space \(\|x\| \)
 - Hilbert space \(\langle x, y \rangle \)
 - Dual space \(A^* : V^* \to V^* \)
Generic Algorithms for Linear Algebra

- A complete set of linear algebra functionality:

<table>
<thead>
<tr>
<th>Generic algorithm</th>
<th>Abstract operation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>scale()</code></td>
<td>$\alpha \cdot x \in V$</td>
</tr>
<tr>
<td><code>add()</code></td>
<td>$(\alpha \cdot x + \beta \cdot y) \in V$</td>
</tr>
<tr>
<td><code>mult()</code></td>
<td>$A : V \rightarrow V$</td>
</tr>
<tr>
<td><code>norm()</code></td>
<td>$|x|$</td>
</tr>
<tr>
<td><code>dot()</code></td>
<td>$\langle x, y \rangle$</td>
</tr>
<tr>
<td><code>transpose()</code></td>
<td>$A^* : V^* \rightarrow V^*$</td>
</tr>
</tbody>
</table>
Conjugate Gradient Algorithm

for \(i = 1, 2, \ldots \)

solve \(M z^{(i-1)} = r^{(i-1)} \)

\(\rho_{i-1} = r^{(i-1)T} z^{(i-1)} \)

if \(i = 1 \)

\(p^{(1)} = z^{(0)} \)

else

\(\beta_{i-1} = \rho_{i-1}/\rho_{i-2} \)

\(p^{(i)} = z^{(i-1)} + \beta_{i-1} p^{(i-1)} \)

\(q^{(i)} = Ap^{(i)}, \ \alpha_i = \rho_{i-1}/p^{(i)T} q^{(i)} \)

\(x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)} \), \(r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)} \)

check convergence

end
ITL Implementation of CG

while (! iter.finished(r)) {
 M.solve(r, z);
 rho = dot_conj(r, z);
 if (iter.first()) copy(z, p);
 else { beta = rho / rho_1;
 add(z, scaled(p, beta), p); }
 mult(A, p, q);
 alpha = rho / dot_conj(p, q);
 add(x, scaled(p, alpha), x);
 add(r, scaled(q, -alpha), r);
 rho_1 = rho;
 ++iter;
}
Genericity and Abstraction

- Genericity and abstraction are dual concepts.
- Ideally, an abstract operation should be represented as a single, generic algorithm.
- E.g., an `add()` algorithm should implement
 \[(\alpha \cdot x + \beta \cdot y) \in V\]
 for any concrete representation of \(V\).
- In the real world, we classify representations and provide generic algorithms for each class (not each class).
Genericity and C++

- Generic programming can be accomplished in C++ with the template system

```cpp
template <class InIter, class T>
T accumulate(InIter first, InIter last, T init)
{
    while (first != last)
    {
        init = init + *first++;
    }
    return init;
}
```
Matrix Template Library

- A complete framework is needed, operating in conjunction with the generic algorithms
- The Matrix Template Library (MTL) includes
 - Generic algorithms
 - Containers
 - Iterators
 - Adaptors
 - Function objects
The MTL Generic Algorithms

- As with the STL, use *iterators* to traverse through a container

- A matrix representation can be abstractly thought of as a *container of containers*

- Use *iterators* and *2-dimensional iterators* to traverse the matrix

- A large class of matrix types can be implemented with this interface
Iterators for Linear Algebra

- Interface between generic algorithms and containers
Index-free Algorithms

- Iterate from `begin()` to `end()` of a vector.
- Iterate from `begin_rows()` to `end_rows()` (or columns) of a 2-D container.
- This side-steps traditional annoyances such as the difference between Fortran (from 1) and C (from 0) indexing.
Unifying Sparse and Dense

- Iterators hides difference in traversal
- \texttt{index()} method hides difference in indexing
- An example from a matrix-vector multiply.

\begin{verbatim}
for (j = i->begin(); j != i->end(); ++j)
 tmp += *j * x[j.index()];
\end{verbatim}
Same Algorithm with Shaped Matrices

- banded, triangle, symmetric, hermitian
- Algorithms process vectors from `begin()` to `end()`. Therefore container implementations change, algorithms do not.
A Generic Matrix-Vector Multiply

template <class Matrix, class VecX, class VecY>
void mult(Matrix A, VecX x, VecY y) {
 typename Matrix::row_2Diterator i;
 typename Matrix::RowVector::iterator j;
 for (i = A.begin_rows();
 i != A.end_rows(); ++i) {
 tmp = y[i.index()];
 for (j = i->begin(); j != i->end(); ++j)
 tmp += *j * x[j.index()];
 y[i.index()] = tmp;
 }
}
Transpose, Scaling, and Striding Permutations

- Avoid repetitious algorithm variations as in the BLAS
- Use matrix, vector, and iterator adaptors instead
- An adaptor wraps up an object and modifies its behavior

```c
// y <- A' * alpha x
mult(trans(A), scaled(x, alpha), strided(y, incy));
```
MTL Iterators

MTL iterators include **sparse**, **dense**, **strided**, **scaled**, and **block**

Iterator adaptors modify the behavior of a base iterator

template <class Iter>
class scaled_iterator {
 scale_iterator(Iter i, T a)
 : iter(i), alpha(a) { }
 T operator*() { return *iter * alpha; }
 self& operator++() { ++iter; return *this; }
 Iter iter; T alpha;
};
Containers for Linear Algebra

- Concrete representations of members of V (vectors) and linear transformations (matrices)
- Vectors are relatively straightforward (one dimensional container of type F, similar to STL vector)
- Matrices are more involved because two-dimensional object must be implemented with a one-dimensional memory space
Containers for Linear Algebra:

Properties

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\]

\[\Leftrightarrow A(i, j)\]
Containers for Linear Algebra: Properties

Two-dimensional storage: e.g., dense contiguous, compressed sparse

Underlying one-dimensional storage: e.g., list

Basic (elemental) type: e.g., float, complex<double>

Orientation: e.g., row, column, diagonal

Shape: e.g., symmetric, triangle, banded
MTL Containers for Linear Algebra

- MTL matrices are built by template composition of:
 - Basic numeric type (precision) (x6)
 - One-dimensional container (x5)
 - Two-dimensional container (x2)
 - Orientation (x3)
 - Shape and packing (x8)

- Approx 1440 matrix types implemented in 16 classes

triangle<row<array2D<dense1D<double>>>, lower>
Role for each MTL template layer

- **Numeric Type**: numeric representation and arithmetic
- **Storage**: determine elt location in memory
- **Shape**: transform (major,minor) to a different “shape”
- **Orientation**: map (major,minor) to (row,column)

```cpp
triangle<row<array2D<dense1D<double>>>>, lower>
```
Demonstration of the roles

- Example implementations of the `operator()(i, j)`.
- Storage layer: map 2-D coords to a linear memory

```cpp
// normal dense matrix storage
reference operator()(int major_index,
                     int minor_index) {
    return *(major_index * ld + minor_index);
}
```
Roles: more storage formats

// banded matrix storage
reference operator()(int major_index,
 int minor_index) {
 return *(i * ndiag
 + max(0, sub(bandwidth) - i) + j);
}

// array of array storage
reference operator()(int major_index,
 int minor_index) {
 return array[major_index][minor_index];
}
Roles: Shape Adaptor Level

// banded shape adaptor
reference operator()(int major_index,
 int minor_index) {
 return twod(major_index, minor_index
 - max(major_index - sub(bandwidth), 0));
}
// diagonal shape adaptor
reference operator()(int major_index,
 int minor_index) {
 size_type diag = major_index -
 minor_index + super(bandwidth);
 if (major_index >= minor_index)
 return twod(diag, minor_index);
 else
 return twod(diag, major_index);
}
Roles: Orientation Adaptor Level

// row-major adaptor
reference operator()(int i, int j) {
 return shape(i, j);
}

// column-major adaptor
reference operator()(int i, int j) {
 return shape(j, i);
}
The MTL Basic Numeric Types

MTL can support an unlimited number of basic numeric types. The following types have been tested in conjunction with MTL.

Basic C++ types: bool, int, float, double

Extended Precision: doubledouble

Complex: complex<float>, complex<double>, complex<doubledouble>

Interval: interval<float>, etc.
The MTL 1-D Containers

- `dense1D` implemented with STL's `vector` class
- `sparse1D` adaptor for containers of index-value pairs
- `compressed1D` separate index and value arrays
- `scaled1D` and `strided1D` adaptor classes

```
triangle<row<array2D<dense1D<double>>, lower>
```
The MTL 2-D Containers

- array2D composes 1-D containers into a matrix
- dense2D contiguous dense matrix
- compressed2D contiguous sparse matrix
- scaled2D adaptor class

```
triangle<row<array2D<dense1D<double>>>, lower>
```
The MTL Orientation Adaptors

Use a single 2-D container implementation for both row and column major matrix formats.

- Row Orientation
 - Maps row to *major*, column to *minor*

- Column Orientation
 - Maps column to *major*, row to *minor*

- All 2-D methods and typedefs are mapped.
The MTL Shape Adaptors

- banded
- triangle
- symmetric
- hermitian

Each in packed and unpacked variations.

triangle<row<array2D<dense1D<double>>>, lower>
Example Use: Block LU Algorithm

- Perform point-wise LU to get L_{11}, U_{11}, and L_{21}.
- Do a triangular solve to get A_{12}.
- Do matrix product $A_{22} \leftarrow L_{21} \times A_{12}$.
void block_lu(Matrix& A, Pvector& ipvt) {
 Pvector pivots(BF);
 for (int j = 0; j < min(M, N); j += BF) {
 int jb = min(min(M, N) - j, BF);
 // set up the submatrices A0, A1, A2
 // L11, A12, A21, A22 ...
 lu_factorize(A1, pivots);
 multi_swap(A0, pivots);
 if (j + jb < M) {
 multi_swap(A2, pivots);
 tri_solve(L11, A12, left_side());
 if (j + jb < M)
 mult(scaled(A21,-1),A12,A22);
Example Use:

The Iterative Template Library (ITL)

- Iterative methods:

 CG, CGS, BiCG, BiCGStab, GMRES, QMR, TFQMR, Chebyshev, Richardson

- Preconditioners:

 SSOR, incomplete Cholesky, incomplete LU, ILU with thresholding

- Generic interface and implementation

 built on top of the MTL
The ITL Generic Components

Perconditioner An object with a \texttt{solve}(x,z) method.

Iteration Convergence test and iteration count.

Vector STL-like container with iterator interface.

Matrix Either a MTL style matrix or a \textit{multiplier} object for matrix-free methods.
The ITL Function Interface

The interface for the quasi-minimal residual (QMR) method, which uses a split preconditioner, hence M1 and M2.

template <class Matrix, class Vector1,
 class Vector2, class Precond1,
 class Precond2, class Iteration>
int qmr(const Matrix& A, Vector1& x,
 const Vector2& b, const Precond1& M1,
 const Precond2& M2, Iteration& iter);
typedef row< compressed2D<double> > matrix;
int max_iter = 50;
matrix A(5, 5);
dense1D<double> x(A.nrows(), 0.0);
dense1D<double> b(A.ncols(), 1.0);
// fill A ...
SSOR<matrix> precond(A);
basic_iteration<double> iter(b, max_iter, 1e-6);
qmr(A, x, b, precond.left(), precond.right(), iter);
Conjugate Gradient Algorithm

for \(i = 1, 2, \ldots \)

solve \(Mz^{(i-1)} = r^{(i-1)} \)

\(\rho_{i-1} = r^{(i-1)T}z^{(i-1)} \)

if \(i = 1 \)

\(p^{(1)} = z^{(0)} \)

else

\(\beta_{i-1} = \rho_{i-1}/\rho_{i-2} \)

\(p^{(i)} = z^{(i-1)} + \beta_{i-1}p^{(i-1)} \)

\(q^{(i)} = Ap^{(i)}, \quad \alpha_i = \rho_{i-1}/p^{(i)T}q^{(i)} \)

\(x^{(i)} = x^{(i-1)} + \alpha_ip^{(i)}, \quad r^{(i)} = r^{(i-1)} - \alpha_iq^{(i)} \)

check convergence

end
while (! iter.finished(r)) {
 M.solve(r, z);
 rho = dot_conj(r, z);
 if (iter.first()) copy(z, p);
 else { beta = rho / rho_1;
 add(z, scaled(p, beta), p); }
 mult(A, p, q);
 alpha = rho / dot_conj(p, q);
 add(x, scaled(p, alpha), x);
 add(r, scaled(q, -alpha), r);
 rho_1 = rho;
 ++iter;
}
The ITL Advantages

- Mix and match components
- Flexible and extensible
- Easy to implement, maintain, and modify
- Performance issues separated from algorithms
- Matrix storage types separated from algorithms
Fortran-like performance with C++

That is, high performance amidst the use of abstractions.

Static Polymorphism: Templates allow for data-type based function selection at compile time. This enables **inlining**.

Lightweight Object Optimization: The compiler reduces structures to their parts to enable register allocation. This means iterators can be high performance.

Follow Coding Guidelines: Enable the C++ compiler to make the above optimizations. Double check the intermediate C code.
Performance Digression

- It is easy to get high levels of performance if you define “high” in a suitable (but vague) fashion

 - “Equivalent to C / Fortran”

 - “Equivalent to hand-written”

 - “Within a factor of 2 of C / Fortran”

- Vendor-tuned are typically (but not always) the best

- MTL performance goal is to offer best possible performance
Peak Performance

- Tuning process is fairly well understood
- Make use of architecture features that are provided for high performance
 - Cache (improve temporal and spatial locality)
 - Instruction pipelining
- These processes can be parameterized
- Create abstractions to handle the optimizations
Meta-Programming Optimizations

Important optimizations to perform in the C/C++ code:

- Loop unrolling
- Register-level blocking

The blocking sizes are machine dependent, so the optimization scheme must be flexible and parameterized, which is impossible to do in C or Fortran.
The Language Problem

It is impossible to express variable degrees of unrolling and blocking in C and Fortran

// unroll by two
y[0] += a * x[0];
y[1] += a * x[1];

// unroll by three
y[0] += a * x[0];
y[1] += a * x[1];
y[2] += a * x[2];
Previous Solutions: PHiPAC and ATLAS

- Search scripts find best blocking factors
- Code generation system customizes the code
- Result is portable high performance
- Complex software system
- Hard to maintain and/or modify (the numerical code is controlled indirectly)
C++ to the Rescue!

- With *template meta-programming* techniques, *variable*
degrees of unrolling can be directly expressed

- Made possible by integer template parameters

```cpp
template <class T, int M>
class X {
    ...
};
```
The Fixed Algorithm Size Template (FAST) Library

- Essentially STL for fixed (at compile time) size computations
- A combination of generic programming with template meta-programs
- Suitable for small sized, performance critical kernels
- Demonstrates that extra abstraction levels do not hinder performance
Comparison of STL and FAST

// STL
int len = 4;
int* x = new int(len); int* y = new int(len);
fill(x, x+len, 1); fill(y, y+len, 3);
std::transform(x, x+len, y, y, plus<int>());

// FAST
const int LEN = 4;
int* x = new int(LEN); int* y = new int(LEN);
fill(x, x+LEN, 1); fill(y, y+LEN, 3);
fast::transform(x, cnt<LEN>(), y, y, plus<int>());
Definition of fast::transform()

- Recursion is used instead of loops
- Recursion depth is fixed and each call becomes inlined

```cpp
template <int N, class InIter1, class InIter2, class OutIter, class BinOp>
OutIter
transform(InIter1 in1, cnt<N>, InIter2 in2, OutIter out, BinOp binary_op) {
    *out = binary_op (*in1, *in2);
    return transform(++in1, cnt<N-1>(), ++in2, ++out, binary_op);
}
```
Basic Linear Algebra Instruction Set (BLAIS)

- Linear algebra kernels for fixed sized computations.
- Complete expansion results in no loops. Just as good as hand coded unrolling.
- Presents a simple and elegant interface.
- Simple implementation layered on the Fixed Algorithm Size Template (FAST) library.
- Template metaprograms can be elegant!
// General Case
template <int M, int N>
struct mult {
 template <class ColIter, class IterX, class IterY>
 mult(ColIter col_iter, IterX x, IterY y) {
 add<M>(scl((*col_iter).begin(),*x),
 y);
 mult<M, N-1>(++col_iter, ++x, y);
 }
};

// N = 0 Case
...
Recursive Matrix Product Using BLAIS

```c
void mult(MatA& A, MatB& B, MatC& C) {
    while (A_k != A.end_rows()) {
        while (B_j != B.end_columns()) {
            MatC::Block Cblock = *C_kj;
            while (B_ji != (*B_j).end()) {
                blais::mult(*A_ki, *B_ji, Cblock);
                ++B_ji; ++A_ki;
            } // cleanup K left out
            ++B_j; ++C_kj;
        } // cleanup N left out
        ++A_k; ++C_k;
    } // cleanup M left out
}
```
Dense Matrix-Matrix Performance
(UltraSPARC 170E)
Dense Matrix-Matrix Performance
(UltraSPARC 30)
Dense Matrix-Matrix Performance

(RS6000 590)
Dense Matrix-Matrix Performance

(Pentium II 400Mhz)
Dense Matrix-Vector Performance

(UltraSPARC 170E)
Sparse Matrix-Vector Performance
(UltraSPARC 170E)
Conclusions:

What does genericity buy?

- Huge (multiplicative) functionality delivered with small (additive) effort
- Elegance
- Code re-use
- Performance
Conclusions: Performance

- Performance is a solved problem and is not a valid argument for the use of primitive programming languages.
- Performance portability is a solved problem. Libraries do not need to be supplied by vendors.
- Performance portable, functionally comprehensive libraries can be developed with reasonable scale of effort.